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LES EXPERIMENTS

10 LES runs with varying

e Geostrophic winds Ug = (U,, V;)

e Wave age ¢/U,

¢ Wind-wave alignment ¢

Wave properties

e Phase speed ¢ = 12.5 m/s, wavelength A = 100 m,

amplitude a = 1.6 m, waveslope ak = 0.1

-
.

Discretization

x

e ANt~ 0.2s

steps > 100,000
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progress report

Contract Number N00014-06-M-0169

Title of Research Large eddy simulations of surface winds above water waves:
Effects of wind-wave alignment and and wave age

Principal Investigator Peter P. Sullivan

Organization Mesoscale and Microscale Meteorology
National Center for Atmospheric Research

Technical Objectives

The research program outlined here is a follow on to the mini-workshop on calculating ship motions in
geophysical environments held in early 2006 in Washington, DC. The long term goal of this research is to
further the present understanding of turbulent flow over surface waves and the coupling with ocean
currents, information which can potentially provide. guidance for ship designs and motion prediction in
extreme sea states. In the near term the research focuses on examining the sensitivity of the atmospheric
surface winds (magnitude, direction, and statistics) to varying wind-wave orientation and wave age (i.e.,
equilibrium and non-equilibrium sea states) using idealized turbulence resolving large-eddy simulations
(LESs). The output from the numerical simulations, statistics and visualization of surface-layer winds,
forms a database which can then be used to identify wind-wave conditions that would adversely impact
the motion of ships at sea. On a longer timeline algorithmic improvements to our LES will be pursued to
allow simulations above a measured spectrum of 3D surface waves.

Technical Approach

Our technical approach to the interaction problem between atmospheric turbulence and surface waves is a
computational one that relies on turbulence resolving LES. It builds and expands on work currently
funded by the Physical Oceanography Section of ONR. Currently, we are using LES with resolved
surface waves to aide in the interpretation of observations collected during the low-wind Coupled
Boundary-Layers Air-Sea Transfer (CBLAST) field campaign (Edson etal, 2007, Sullivan etal, 2007) and
in the new ONR High-Resolution Air-Sea Interaction Departmental Research Initiative. Details can be
found in progress reports submitted to ONR during years FYO1 through FY06. Also we are analyzing
observational data from a unique field campaign focused on improving subgrid-scale models in LES
codes (Sullivan etal, 2006).

For the initial stage of the present project we are using an existing LES code for the marine planetary
boundary layer (PBL) with the novel capability to impose 2D moving sinusoidal modes at its lower
boundary. The computational algorithm uses a co-located grid and solves advection equations for
Cartesian (spatially filtered) velocity components u, subgrid-scale energy e, and potential temperature
© [further details are given in Sullivan efal (2007)]. The code is used to simulate stratified atmospheric
turbulence driven by variable geostrophic pressure gradients in the presence of monochromatic surface
waves of varying amplitude (or waveslope ak), phase speed ¢, and vector orientation between winds and
waves. Important parameters used to classify the state of winds and waves are then the wave age c/|U,|,
where U, is the geostrophic wind vector, and the orientation (alignment) between U, and the wave
propagation direction. A database of LES solutions with systematic variations in wave age and wind-



wave alignment can then be built. In order to reduce the heavy computational expense new solutions are
generated using restarts from a seed solution of a low-wind strongly dominated swell regime (Sullivan
etal, 2007). The latter was run to a quasi-stationary (statistically steady) state. LES volumes are used to
generate turbulence statistics, e.g., mean wind speed, turbulence variances, and for flow visualization.

Progress Statement Summary

A large-eddy simulation (LES) code for the marine atmospheric boundary layer with the capability to
impose 2D sinusoidal moving modes at its lower boundary was used to study the interaction between the
atmospheric winds and the wavefield. During the past year 8 new LES solutions were generated with
variations in wave age and wind-wave alignment. Results from these simulations show that atmospheric
winds (means and instantaneous fields) respond in unique ways depending on the character of the wave
field. When the wavefield is dominated by swell upward momentum transport from the ocean to the
atmosphere can create a low-level wind maximum. However if swell opposes the wind, the wave field
acts similar to stationary roughness slowing the surface layer winds and generating high levels of
turbulent fluctuations. The response of the surface-layer winds to growing seas is similar to flow over
stationary roughness elements but depends on wind-wave alignment.

Progress

Our previous computational work (Sullivan etal, 2007) as well as observations (e.g., Donelan etal, 1997)
find that the structure of the marine PBL and in particular the surface layer winds depend on the state of
the wave field. In situations where the wave field is propagating faster than the surface wind, i.e., the
wavefield is dominated by swell, unique interactions occur that include: development of a low-level wind
maximum and upward momentum transport from the wavefield to the winds. These features are in

contrast to situations where the wave field is growing under the action of the wind, i.e., young developing
seas.

Run Geostrophic wind Wave propagation Wave age
vector (U, V) (m/s) direction 8 (degrees) c/| Uy

1 (5,0) 0 >2
2 (5,5) 0 >2
3 (5,0) 180 >2
4 (5,5) 180 >2
5 (12.5,0) 0 =]
6 (12:5,12.5) 0 !
7 (12.5,0) 180 =

8 (12.5,12.5) 180 =1
9 (12.5,0) 0 =]

Table 1: Wind and wave properties of the LES database

In order to further study the interactions between surface layer turbulence and waves we expanded our
existing LES database by generating 8 new LES solutions during the past year. These new runs vary wave
age and wind-wave alignment by adjusting the horizontal components of the geostrophic wind as shown
in Table 1. In all runs the boundary layer is driven by constant geostrophic winds with zero surface
heating typical of a near-neutral marine atmospheric PBL. The 3D computational domain is
(1200x1200x800)m discretized with (250x250x96) gridpoints. A surface-fitted mesh is utilized and to
concentrate resolution near the wave a stretched vertical grid with vertical spacing Az = Im at the surface
is employed. For all simulations the imposed surface wave has wavelength A = 100m, phase speed ¢ =



12.5m/s, and waveslope ak = 0.1 where the wavenumber k£ = 27t/A and q is the wave amplitude. Run 9
examines the sensitivity to wave amplitude as it has steeper waves with ak = 0.15. Note that in Table 1 for
runs [1,2,5,6,9] the waves are propagating with the u-component of the surface wind (i.e., the wave
propagation direction 6 = 0 degrees) while in runs [3,4,7,8] the waves are opposing the u-component of
the surface wind (i.e., 6 = 180 degrees). Statistics are obtained by spatial averaging in horizontal planes
and by time averaging. Further computational details are provided in Sullivan etal (2007).

Extensive flow visualization and animations of the LES solutions are used to investigate interactions
between marine PBL winds and the imposed surface wave. An illustration of the impact of wave age and
wind-wave alignment on the instantaneous horizontal wind field w, is shown in Figure 1. It is readily
apparent that the structure of the PBL wind fields and in particular the surface winds are dependent on
wave state. In the case dominated by swell (wave age > 2) the wave signature is strongly impressed on the
winds and pockets of super-geostrophic wind speed are observed in the wave troughs; a signature of
wave-driven winds. Meanwhile for growing seas (wave age = 1), elongated streaks appear and are the
dominant coherent structure in the PBL surface layer; in this particular simulation the surface low-speed
streaks are rotated in the computational domain mimicing the orientation of the geostrophic wind vector
(see Table 1). Similar streaks are observed in neutrally stratified LES over stationary roughness (Moeng
& Sullivan, 1994) which suggest that flow over growing seas has some similarity to flow over roughness.

Figures 2 and 3 quantify the impact of wind-wave alignment and wave age on the surface layer mean
wind and turbulent fluctuations. In these figures, the horizontal winds (u) are interpolated to a standard
10 m height above the surface. Wind-wave alignment is observed to have an important impact on the
magnitude of the mean surface wind, see Figure 2. For wave age > 2 with winds and waves propagating
in the same direction notice the formation of a low-level wind maximum (u})/ Ul > 1 and a slight
rightward rotation of the wind vector compared to the geostrophic wind vector. These effects are a
consequence of upward momentum transfer, i.e., in the opposite sense from the waves to the winds as
discussed by Sullivan etal (2007). However if the wave propagation direction is reversed so that the
winds and waves are opposed then the underlying wave field acts similar to stationary roughness; the
waves induce negative vertical momentum transfer (u'w’ < 0) which slows the surface winds. For
geostrophic winds aligned at an angle of 45 degrees to the surface waves the mean wind speeds are
observed to be bound by the two extremes of aligned and opposing winds and waves. For run 2, the
surface winds are distinctly rotated to the right of the geostrophic wind vector an indication of upward
momentum transfer from waves to wind. The above trends depend strongly on the state of wave
development, ie., wave age. For growing seas (wave age =~ 1) the surface waves always act as drag
elements similar to stationary roughness irrespective of the wind-wave alignment. The surface winds are
always slower than the geostrophic wind, but the magnitude of the mean wind is dependent on the wind-
wave alignment. An increase in waveslope (run 9) does not appear to alter these trends.

It is expected that wind gusts (turbulence) also play an important role in estimating ship motions. Figure 3
shows how the horizontal turbulence intensity varies with wave age and wind-wave alignment. Notice the
magnitude of the wind fluctuations exhibits an opposite trend compared to the mean wind; the horizontal
turbulent fluctuations are largest (smallest) in the case of opposing (following) winds and waves. In
particular the largest turbulent fluctuations, as a fraction of the mean wind, occur for wave age > 2 with
opposing winds and waves.

In the open ocean winds and waves are often in dis-equilibrium; the wave field can be moving faster or
slower and at angles to the surface winds. The present LES results, statistics and instantaneous flowfields,
illustrate that the surface layer winds (means and fluctuations) respond in unique ways depending on the
character of the underlying wave field.
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Figure 1: Visualization of instantaneous horizontal wind fields u, in the presence of a moving
surface wave. Upper panel is simulation run 1 with wave age > 2 for winds following waves, while
the lower panel is simulation run 6 with wave age = 1. In each figure the horizontal plane is at z =
10 m. The winds are normalized by the magnitude of the geostrophic wind and the color bar is in
units of u, /AU,|. For visualization purposes the images are stretched in the vertical direction and
the white mesh lines denote the wave surface. The horizontal extent of the domain is 1200 m in the
x and y directions and 135 m in the z direction. Note the super-geostrophic winds in the upper
panel and the strong signature of the underlying wave in the wind field.
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Figure 2: Effect of wave age and wind-wave alignment on the mean horizontal wind () at 7 =
10m. The surface winds are normalized by the geostrophic wind magnitude |U,|. Colored and
black lines indicate the magnitude and orientation of the surface and geostrophic winds,
respectively, and the direction of wave propagation is shown in the legend. Results for situations
dominated by swell (wave age > 2) and growing seas (wave age = 1) are presented in the left and
right panels, respectively.
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Figure 3: Effect of wave age and wind-wave alignment on the magnitude of the horizontal wind
turbulence [root-mean-square (rms) values] at z = 10m for the same cases as in Figure 2. The rms

wind fluctuations ;" are normalized by the geostrophic wind magnitude |Ug|. The legend shows
the direction of wave propagation.
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11B.5 A HIGHLY PARALLEL ALGORITHM FOR TURBULENCE SIMULATIONS IN
PLANETARY BOUNDARY LAYERS: RESULTS WITH MESHES UP TO 10243

Peter P. Sullivan*and Edward G. Patton
National Center for Atmospheric Research, Boulder, CO

1. INTRODUCTION

Petascale computing (e.g, UCAR/JOSS, 2005) has
the potential to alter the landscape of turbulence simu-
lations in planetary boundary layers (PBLs). Increased
computer power using O(10* — 10) or more processors
will permit large-eddy simulations (LESs) of turbulent
flows over a wide range of scales in realistic outdoor
environments, for example, flow over hills, atmosphere-
land interactions (Patton et al., 2005), boundary layers
with surface water wave effects (Sullivan et al., 2008,
2007), and weakly stable nocturnal flows (Beare et al.,
2006) to mention just a few. However, computational al-
gorithms need to evolve in order to utilize the large num-
ber of processors available in the next generation of ma-
chines. Here we briefly describe some of our recent de-
velopments focused on constructing a massively parallel
large-eddy simulation (LES) code for simulating incom-
pressible Boussinesq atmospheric and oceanic boundary
layers. The performance of the code is evaluated on vary-
ing meshes utilizing as many as 16,384 processors. As an
application, the code is used to examine the convergence
of LES solutions for a daytime convective PBL on grids
varying from 323 to 10243

2. 2-D DOMAIN DECOMPOSITION

Typical LES model equations for dry Boussinesq
boundary layers include at a minimum: a) transport
equations for momentum pu; b) a transport equation for a
conserved buoyancy variable (e.g., virtual potential tem-
perature 6,); c) a discrete Poisson equation for a pres-
sure variable m to enforce incompressibility; and clo-
sure expressions for subgrid-scale (SGS) variables, e.g.,
a subgrid-scale equation for turbulent kinetic energy e.
In our LES code these equations are integrated forward
in time using a fractional step method. The spatial dis-
cretization is second-order finite difference in the ver-
tical direction and pseudospectral in horizontal planes
(Moeng, 1984). Dynamic time stepping utilizing third-
order Runge-Kutta with a fixed Courant-Fredrichs-Lewy

*corresponding author address: Peter P. Sullivan, National Center
for Atmospheric Research, P. O. Box 3000, Boulder, CO 80307-3000;
email: pps@ucar.edu

(CFL) number (Sullivan et al., 1996; Spalart et al., 1991)
is employed. Evaluating horizontal derivatives with Fast
Fourier transforms (FFTs) and solving the elliptic pres-
sure equation are non-local operations which impact the
parallelization.

Our previous code parallelizes the flow model de-
scribed above using a single domain decomposition pro-
cedure that combines distributed memory MPI tasks
(Aoyama and Nakano, 1999) and shared memory OMP
threads (Chandra et al., 2001). The full computational
domain is naturally first decomposed in the vertical z di-
rection using MPI, i.e,, a subset of vertical levels and
full horizontal x — y domains are assigned to each com-
putational node. Work on a node is then further parti-
tioned amongst local threads using OMP directives. This
scheme has some advantages; 1) it does not split FFTs
across spatial directions since threads share the same
memory and thus a specialized parallel FFT package is
not required; and 2) it can utilize the architecture of ma-
chines with large numbers of processors per computa-
tional node (e.g., the IBM SP5 with 16 processors/node).
However the scheme is limited on computing platforms
which have few processors/node (e.g., the Cray XT4 with
2 processors/node), and moreover we find the OMP di-
rectives require continual maintenance that adds over-
head and complexity.

To streamline the code and increase its flexibility a
new parallel algorithm is designed based on the fol-
lowing criteria: 1) accomplish 2-D domain decomposi-
tion using solely MPI parallelization; 2) preserve pseu-
dospectral (FFT) differencing in x — y planes; and 3)
maintain a Boussinesq incompressible flow model. The
ability to use 2-D domain decomposition has been shown
to be a significant advantage in pseudospectral simu-
lation codes as it allows direct numerical simulations
of isotropic turbulence on meshes of 2048 or more
(Pekurovsky et al., 2006). A sketch of the domain de-
composition layouts that adhere to our constraints is
given in figure 1. We mention 2-D domain decomposi-
tion in x — y planes is compatible with the use of low-
order finite difference schemes (Raasch and Schroter,
2001) and mesoscale codes that adopt compressible
equations (Michalakes et al., 2005).

In our 2-D domain decomposition, each processor op-



erates on constricted three-dimensional “bricks or pen-
cils” sub-sampled in x, y or z directions. Brick-to-brick
communication is a combination of transposes and ghost
point exchange. To preserve pseudospectral differenc-
ing in the horizontal directions a custom MPI matrix
transpose was designed and implemented. Note other
non-local schemes, e.g., compact finite difference (Lele,
1992) or fully spectral direct numerical simulation codes
(Werne and Fritts, 1999), require similar communication
patterns. Our transpose routines perform the forward and
inverse operations

all x
fepz) | 5L y<y. | &=
< z<z

ally
fr(y,x,z) X< x <X ()
z< zL2

on a field f using a subset of horizontal processors as

Figure 1: 2-D domain decomposition on 9 processors: (a)
base state with y — z decomposition; (b) x — z decomposi-
tion used for computation of y derivatives and 2-D planar
FFT; and (c) x — y decomposition used in the tridiagonal
matrix inversion of the pressure Poisson equation.

shown in figure 1a and 1b. In (1) and following equa-
tions, subscripts ( ). denote starting and ending loca-
tions in the (x,y,z) directions. The data transpose shown
schematically in figure 1a and 1b only requires local
communication, i.e., communication between proces-
sors in groups (0,1,2], [3,4,5], and [6,7,8]. Derivatives
df/dy, which are needed in physical space, are computed
in a straightforward fashion using the sequence of steps:

1. forward x to y transpose f — f7;
2. FFT derivative 9/ /dy; and ,
3. inverse y to x transpose 97 /dy — 3f/ay.

Existing serial 1-D FFT routines for real and complex ar-
rays are used as in previous implementations. Note with
this algorithm so-called ghost points used in computing
derivatives d//dz are only needed on the top and bottom
faces of each brick in figure 1a.

The 2-D brick decomposition of the computational do-
main also impacts the pressure Poisson equation solver.



In an incompressible Boussinesq fluid model the pres-
sure T is a solution of the elliptic equation

Vim = ¥, )

where the source term  is the numerical (discrete) diver-
gence of the unsteady momentum equations (e.g., Sulli-
van et al., 1996). The solution for ® begins with a stan-
dard forward 2-D Fourier transform of (2):

. 0
= (k% o kﬁ) T +F =
all &,
f(ky,kx,z) with ks <hke <hkee |, (3)
2;<z <z

where (k, k,) are horizontal wavenumbers. At this stage
the data layout on each processor is as shown in figure
1b. Next, custom routines carry out forward , to z and
inverse z to k, matrix transposes on the source term of

3):

all k,

’A'(kyykx,z) bee <k <k —
z3<z <z

all z

FT(Za kx=ky) ks <hy <lhge 4)

kys < k_v < kye

Again notice the communication pattern needed to trans-
pose from figure 1b to lc is accomplished locally by
processors in groups [0,3,6], [1,4,7], and [2,5,8]. The
continuous storage of # along the z direction allows
straightforward tridiagonal matrix inversion for pairs of
horizontal wavenumbers on each processor. This step is
repeated for all pairs of horizontal wavenumbers and pro-
vides the transposed field 1‘tT(z, ks < kve kys  kye). To re-
cover the pressure field in physical space we retrace our
steps: 7 — ft followed by an inverse 2-D Fourier trans-
form t — m. In designing the present algorithm, we also
considered using the parallel tridiagonal solver described
by Gibbs (2004) for the solution of the Poisson equation
but found it not well suited for the present scheme.

With these enhancements our new algorithm allows
very large number of processors O(10%) to be utilized.
An important feature of the algorithm is that no global
MPI ALLTOALL communication between processors
is required. Instead, the MPI routine SENDRECV is
wrapped with FORTRAN statements to accomplish the
desired communication pattern. The scheme outlined
above introduces more communication but the messages
are smaller and hence large numbers of gridpoints can be
used. Also, the total number of processors is not limited
by the number of vertical gridpoints. For example, this
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Figure 2: Computational time per gridpoint for different
combinations of problem size and 2D domain decompo-
sition for the Cray XT4 (an example of strong scaling). a)
green lines and symbols problem size 5123; b) red lines
and symbols 1024°; c) black lines and symbols 2048°;
and d) blue symbol 30723, For a given number of to-
tal processors NP the symbols are varying vertical and
horizontal decompositions, i.e., different combinations
(NP;,NPy).

flexibility allows simulations in boxes with large hori-
zontal and small vertical extents. The transpose routines
are general and allow arbitrary numbers of mesh points,
although the best performance is of course realized when
the load is balanced across processors. Single files, simi-
lar to FORTRAN direct access files, are written and read
using MPI I/O (Gropp et al., 1998). We find MPI I/O
makes the code robust across different machine archi-
tectures and simplifies the logic required for restarts, es-
pecially if the number of processors changes during the
course of a simulation. Finally, the code is compliant
with the FORTRAN-90 programming standard.

The performance of the code for varying workload as
a function of the total number of processors NP is pro-
vided in figures 2 and 3 for 3 different machine archi-
tectures. NP = NP, x NP,, where NP, and NP, are the
number of processors in the vertical and horizontal direc-
tions, respectively. In each figure, the vertical axis is total
computational time ¢ x NP divided by total work. N, is
the number of vertical levels and M, is proportional to
the FFT work, i.e., My, = NyylogN,, with N, the num-
ber of gridpoints in the x and y directions. Ideal scaling
corresponds to a flat line with increasing number of pro-
cessors. The timing tests illustrate the present scheme ex-
hibits both strong scaling (problem size is held fixed and
the number of processors is increased) and weak scal-
ing (the problem size grows as the number of processors
increases so the amount of work per processor is held
constant) over a wide range of problem sizes and is able
to use as many as 16,384 processors, i.e., the maximum
number available to our application on the Cray XT4.
Further, the results are robust for varying combinations
of (NP,,NPy). Generally, the performance only begins
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Figure 3: Computational time per gridpoint for a fixed
amount of work per processor (an example of weak scal-
ing). Red, green, and blue lines 60,000 points/processor
for different machines. Cray XT4 red line; Dual core
IBM SP5+ green line; Single core IBM SP5 blue
line. Black lines and symbols 524,288 points/processor
for Cray XT4. For a fixed number of total proces-
sors NP multiple symbols are different combinations of
(NP;,NP,,).

Table 1: Simulation properties

Run Gridpoints z;(m) z;/Az w, (ms™))
4 323 1120 175 2.06
B 643 1116 349 2.06
g 1283 1123 702 2.06
D 2563 1095 137.0 2.05
E 5123 1088 272.0 2.04
F 10243 1066  536.7 2.04

to degrade when the number of processors exceeds about
8 times the smallest dimension in the problem owing to
increases in communication overhead.

3. GRID SENSITIVITY

Parallel codes allow one to simulate PBLs with a wider
range of scale interactions and external forcings, e.g.,
Jonker et al. (1999) and Sullivan et al. (2007). Here,
we briefly explore one aspect of this much larger issue,
viz., the sensitivity and convergence of LES solutions
as the grid mesh is varied. Checking numerical conver-
gence of LES solutions is not readily addressed in usual
LES practice since the computational demands needed
to carry out the required grid studies become prohibitive
for a 3-D time dependent turbulent flow (e.g., see LES
intercomparison studies by Beare et al. (2006), Brether-
ton et al. (1999) and, Nieuwstadt et al. (1993)). A series
of LES on a fixed computational domain with grid reso-
lutions varying from 323 to 10243 are performed to ex-
amine the solution convergence and flow structures us-

ing the parallel algorithm described in Section 2. For
each grid resolution, the mesh spacing is constant in the
three (x,y,z) coordinate directions. A canonical daytime
convective PBL is simulated in a computational domain
(Xz,Yr,Z1) = (5120,5120,2048) m. The PBL is driven
by a constant surface heat flux Q, = 0.24 Kms~! and
weak geostrophic winds (U, ¥;) = (1,0) ms™'. Other
external inputs are surface roughness z, = 0.1 m, Corio-
lis parameter f = 1 x 10* s~!, and initial inversion height
z; ~ 1000 m. The PBL is dominated by convection since
the Monin-Obukhov length scale L < —1.5 m and thus
the metric z;/L = O(—500) (Moeng and Sullivan, 1994).
All simulations are started from small random seed per-
turbations in potential temperature near the surface. The
simulations are carried forward for more than 25 large
eddy turnover times T = z;/w.. The convective velocity
scale w, = (g0.2:/0,)!/? with g gravity and 6, a refer-
ence potential temperature. See Moeng (1984), Moeng
and Wyngaard (1989) and Sullivan et al. (1998) for a fur-
ther description of the simulation design. Bulk properties
of the simulations are given in Table 1.

4. PRELIMINARY RESULTS

4.1 Flow visualization

Fine mesh simulations allow a wider range of large
and small scale structures to co-exist and thus interact in
a turbulent flow. Flow visualization in figures 4 and § il-
lustrates the formation of both large and small structures.
In figure 4, we observe the classic formation of plumes
in a convective PBL. Vigorous thermal plumes near the
top of the PBL can trace their roots through the middle
of the PBL down to the surface layer. Convergence at
the common corners of the hexagonal patterns in the sur-
face layer leads to the formation of strong updrafts which
evolve into large scale plumes that fill and dominate the
dynamics of the daytime PBL. Near the inversion a de-
scending shell of motion readily develops around each
plume.

Closer inspection of the large scale flow patterns in fig-
ure 4 also reveals coherent smaller scale structures. This
is demonstrated in figure 5 where we track the evolu-
tion of 10° particles over about 1000 seconds. Over the
limited region where the particles are released the flow
is dominated by a persistent line of larger scale upward
convection. On either side of the convection line de-
scending motion develops. Near the surface these down-
drafis turn laterally and converge. The outcome of this
surface layer convergence spawns many small scale ver-
tically oriented vortices, i.e., dust devils. The rapidly
rotating vortices are readily observed, persist in time,
and rotate in both clockwise and counterclockwise di-
rections. Often the vortices coalesce in a region where a



z/2=

coherent thermal plume erupts. Coarse mesh LES hints
at these coherent vortices but fine resolution simulations
allow a detailed examination of their dynamics within a
larger scale flow. Previously, Kanak (2005) has observed
the formation of dust devils in convective simulations,
but in small computational domains O(750) m.

4.2 Statistics

The impact of mesh resolution on typical (normalized)
turbulence statistics, viz., SGS dissipation €, total tur-
bulent kinetic energy E, and maximum vertical velocity
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Figure 4: Visualization of the vertical velocity
field in a convective PBL at different heights
from a 5123 simulation. Plumes near the inver-
sion can trace their origin to the hexagon pat-
terns in the surface layer. The color bar is in

units of ms~!.
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is shown in figure 6. In (5), the resolved scale veloc-
ity components are #; = (#,V,w), the subgrid-scale en-
ergy e = (wu; — u;u;) /2, the LES filter width is A7, and
C¢ ~0.93 is a modeling constant (Moeng and Wyngaard,
1988). A premise of LES, and also the basis of most SGS
modeling, states that the average dissipation is constant



Figure 5: Visualization of particles released in a convective PBL at z/z; ~ 0.2 over a limited horizontal extent from a
1024° simulation of convection. The viewed area is ~ 3.8% of the total horizontal domain. Notice the evolution of the
larger scale line of convection into small scale vortical dust devils. Time advances from left to right beginning along

the top row of images.

if the filter width lies in the inertial subrange range; then
e~ A;ﬂ (Moeng and Wyngaard, 1988). Similarly the
total turbulent kinetic energy, i.e., the sum of resolved
and SGS pieces, also tends to a constant. Figure 6 is a
test of this hypothesis. Notice the LES solutions con-
verge over the bulk of the PBL when the mesh is 256°
or greater. In other words, these low-order LES statis-
tics, for this particular convective PBL, become indepen-
dent of the grid resolution only when z;/ A 7 > 130. This
is typically finer resolution than is used in routine cal-
culations of free convection. It is encouraging to see
only small changes when the resolution is increased from
5123 to 10243, The above results hint that the SGS model
impacts the coarse solutions in important ways, espe-
cially when the filter width approaches the energy con-
taining scales (Sullivan et al., 2003).

Moeng and Rotunno (1990) identify the vertical ve-
locity skewness S,, as a critical parameter in boundary
layer dynamics. In convective PBLs, S,, is an indica-
tor of the updraft-downdraft distribution, provides clues
about vertical transport, and is often utilized in disper-
sion studies (Weil, 1988, 1990). Further, Moeng and Ro-
tunno (1990) find vertical velocity skewness is sensitive
to the structure of the boundaries, i.e., it depends on the
type of surface boundary conditions, and also varies with
Reynolds number in direct numerical simulations. Hunt
et al. (1988) provides a brief interpretation of the skew-
ness variation predicted by LES in the surface layer of a
convective boundary layer.

The definition of the vertical velocity skewness is

(6)

where () denotes an ensemble average and w is the total
velocity. In order to examine the impact of grid resolu-
tion on S,, we analyze the solutions from the different
simulations in Table 1 with the caveat that we use the re-
solved or filtered vertical velocity w. Hence we compute
the resolved skewness
S = ——5 @)
from our LES solutions. Recall since typical LES uses
Smagorinsky style closures with subgrid-scale fluxes pa-
rameterized at the second moment level subgrid-scale
triple moments are unknown and thus there is not a clear
definition of “subgrid-scale skewness” in an LES.
Vertical profiles of S are shown in figure 7. These
profiles exhibit a clear and striking dependence on grid
resolution; near the surface, z/z; < 0.15, Sy decreases
and eventually becomes (unrealistically) negative as the
grid resolution decreases. Meanwhile as z/z; — 1 an op-
posite trend is observed. With decreasing grid resolution
Sw becomes more positive and shows a pronounced max-
imum below the inversion. Away from the lower bound-
ary, 0.05 < z/z; < 1, the skewness estimates appear to
converge when the mesh is fine, 256° or greater. No-
tice the impact of grid resolution in the surface layer.
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Figure 6: Effect of mesh resolution z;/ Az on bulk bound-
ary layer turbulence. a) dissipation; b) total TKE; and
c) the average resolved maximum vertical velocity. In
a) and b) results for different vertical locations z/z; =
(0.1,0.5,0.9) are indicated by (red,black,blue) curves,
respectively.

As z;/ Az increases the skewness estimates, especially
with meshes 5123 and 10243, are in good agreement with
the few available observations. Above z/z; > 0.75, we
have no compelling explanation for the differences be-
tween the fine mesh LES predictions and the few obser-
vations, but note that the presence of wind shear reduces
the skewness (Fedorovich et al., 2001). There is an ob-
vious need for more observations to determine whether
this discrepancy is due to limited sampling in the obser-
vations or is a shortcoming of the LES.

The grid dependence in figure 7 invites further ex-
ploration. Some speculative explanations are: (1) grid
resolution alters the structure of the overlying inversion.
Coarser grids can only support weaker inversions com-
pared to fine grids and perhaps Sy depends on inversion
strength; or (2) perhaps the small scale high frequency
content of (W) changes sign below the inversion and
thereby reduces the magnitude of Sy as the grid is re-
fined.

Our current interpretation of the results in figure 7
hinges on the behavior and modeling of the subgrid-scale
fluxes in LES. In order to expose this dependence we first
introduce the definitions of the third and second order
SGS moments

0 = w-—w

I
33
|
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3|
=
g

vy = w -

(W) 1 (w?y*®

Figure 7: Effect of mesh resolution on vertical velocity
skewness S. The legend indicates the resolution of the
various simulations. Note the skewness is computed us-
ing the resolved (or filtered) vertical velocity field w. Ob-
servations are taken from the results provided in Moeng
and Rotunno (1990).

As in usual LES practice () indicates a spatially filtered
variable in (8). Under the assumption that the filtering
operator commutes with ensemble averaging, e.g.,

. e

the total skewness given by (6) is next written in terms of
resolved and subgrid contributions:

¢ - _(P)+10)
YT+ ()P

Further algebraic manipulation of (10) utilizing (8) leads

W) = W) =

(10)

to D
LR (el e (1)
(1-9)
where Sy is the resolved-scale skewness (7) and
b= @/ (%), (12a)
Vo= /(W) (12b)

are non-dimensional SGS moments. (11) is useful — it
defines the total skewness in terms of LES resolved and
subgrid-scale variables. As might be expected, the sub-
grid contribution to the total skewness involves both sec-
ond and third order moments of vertical velocity.
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Figure 8: Panel a) skewness comparisons: 512° simulation, black line; 5123 simulation filtered in horizontal planes
to 642 resolution, red dotted line; and 64° simulation, black dashed line. Panel b) subgrid-scale moments computed
from 5123 simulation: §, black line; \J, red line; and the SGS skewness correction (1 —)3/2/(1 — ) [which appears

in (11)], blue line.

In order to evaluate the importance of the SGS mo-
ments (9, ) to vertical velocity skewness we filtered the
5123 and 1024° simulation results to produce resolved
and SGS variables on a coarser mesh. This step is justi-
fied since the LES solutions, as shown previously, have
effectively converged at these mesh resolutions. The ver-
tical velocity field from cases E and F are filtered in hor-
izontal x — y planes to a resolution of 64 using a sharp
spectral filter — no filtering is applied in the z direction.
As an independent check on the processing we verified
that the filtered fields satisfy (11) exactly.

Vertical profiles of skewness and SGS moments con-
structed from the filtered 512° simulation (referred to
as case Ey) are presented in figure 8. Results obtained
from filtering the 1024° simulation are similar but dis-
play more variability due to less averaging. The skew-
ness estimates from E are intriguing. They are broadly
similar to the comparable 64° coarse simulation result,
i.e., small in the surface layer and large near the inversion
but exhibit important quantitative differences. In the sur-
face layer the skewness from case E is always positive
except very near the ground, in contrast to simulation B.
This is in agreement with our physical expectation. Also
the skewness from E ; matches the high resolution result
in mid-PBL. The SGS moments in figure 8b illustrate the
shortcomings of the coarse 64 calculation. In the sur-
face layer the triple moment  is very large contributing
more than 50% to (w3), in mid-PBL ¢ ~ \j, and near the

inversion ¢ < . ¢ is always greater than zero. Overall
the SGS “correction” to skewness given by the ratio on
the right hand side of (11) is > 4 in the surface layer,
~ 1 in mid-PBL, and falls to ~ 0.8 near the inversion.
We mention as z — z; the strength of the PBL inversion
might also alter the magnitude of the SGS moments and
their relative contributions to S,,. As noted by Hunt et al.
(1988), Smagorinsky closures are Gaussian models and
hence assume ¢ = 0. As a consequence, coarse mesh
LES results predict erroneous values of skewness be-
cause of their SGS closure schemes. In general, we find
coarse mesh LES tends to overpredict (#°), underpredict
(w?), and thus overpredict Sy compared to fine resolu-
tion simulations as shown in figure 9. When Smagorin-
sky closures are used with LES, meshes of at least 256°
or greater are needed to obtain reliable estimates of Sy.
It will be interesting to examine vertical velocity skew-
ness from LES with alternate non-eddy viscosity closure
schemes, e.g., Wyngaard (2004) and Hatlee and Wyn-
gaard (2007) employ rate equations for the SGS fluxes
and variances.

5. SUMMARY

A highly parallel LES code that utilizes 2-D domain
decomposition and retains pseudospectral differencing in
horizontal planes is described. The code exhibits good
scaling over a wide range of problem sizes and is capa-
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Figure 9: Comparison of third and second order vertical velocity moments from different calculations. 5123 simula-
tion, black line; 5123 simulation filtered in horizontal planes to 642 resolution, red dotted line; and 64° simulation,
black dashed line. Panel a) normalized (w*) /w? and panel b) normalized (w?) /w2.

ble of using as many 16,384 processors of a Cray XT4.
Flow visualization of fine mesh 5123 and 10243 simu-
lations of a convective boundary layer shows a number
of intriguing structural features, e.g., large scale plumes
coupled to small scale vortical dust devils. A grid sen-
sitivity study of a canonical daytime convective PBL
shows that the LES solutions converge reasonably well
for meshes greater than or equal to 256°. The skewness
of vertical velocity Sy highlights the solution sensitivity
to grid resolution. The variations of Si with grid resolu-
tion are a consequence of a Smagorinsky closure which
neglects third-order SGS moments of vertical velocity.
Future applications of this parallel code include high res-
olution simulations of air-wave-water interactions under
high wind conditions and PBL couplings with surface-
layer vegetation.
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